The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons.
نویسندگان
چکیده
Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease. Here, we demonstrate elevated expression of the transcription factor orthodenticle homeobox 2 in A10 dopaminergic neurons of embryonic and adult mouse, primate and human midbrain. Overexpression of orthodenticle homeobox 2 using lentivirus increased levels of known A10 elevated genes, including neuropilin 1, neuropilin 2, slit2 and adenylyl cyclase-activating peptide in both MN9D cells and ventral mesencephalic cultures, whereas knockdown of endogenous orthodenticle homeobox 2 levels via short hairpin RNA reduced expression of these genes in ventral mesencephalic cultures. Lack of orthodenticle homeobox 2 in the ventral mesencephalon of orthodenticle homeobox 2 conditional knockout mice caused a reduction of midbrain dopaminergic neurons and selective loss of A10 dopaminergic projections. Orthodenticle homeobox 2 overexpression protected dopaminergic neurons in ventral mesencephalic cultures from Parkinson's disease-relevant toxin, 1-methyl-4-phenylpyridinium, whereas downregulation of orthodenticle homeobox 2 using short hairpin RNA increased their susceptibility. These results show that orthodenticle homeobox 2 is important for establishing subgroup phenotypes of post-mitotic midbrain dopaminergic neurons and may alter neuronal vulnerability.
منابع مشابه
Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease.
Recent studies suggest a variety of factors characterize substantia nigra neurons vulnerable to Parkinson's disease, including the transcription factors pituitary homeobox 3 (Pitx3) and orthodenticle homeobox 2 (Otx2) and the trophic factor receptor deleted in colorectal cancer (DCC), but there is limited information on their expression and localization in adult humans. Pitx3, Otx2, and DCC wer...
متن کاملEffects on differentiation of embryonic ventral midbrain progenitors by Lmx1a, Msx1, Ngn2, and Pitx3.
Neurons derived from neural stem cells could potentially be used for cell therapy in neurodegenerative disorders, such as Parkinson's disease. To achieve controlled differentiation of neural stem cells, we expressed transcription factors involved in the development of midbrain dopaminergic neurons in rat and human neural progenitors. Using retroviral-mediated transgene delivery, we overexpresse...
متن کاملCortical Neurons Require Otx1 for the Refinement of Exuberant Axonal Projections to Subcortical Targets
Information processing in the nervous system depends on the creation of specific synaptic connections between neurons and targets during development. The homeodomain transcription factor Otx1 is expressed in early-generated neurons of the developing cerebral cortex. Within layer 5, Otx1 is expressed by neurons with subcortical axonal projections to the midbrain and spinal cord. Otx1 is also exp...
متن کاملComparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums
Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...
متن کاملEditorial: Parkinson's disease: cell vulnerability and disease progression
The hallmark of Parkinson Disease (PD) is the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and the consequent striatal dopamine (DA) deficiency, although it is well recognized that neurodegeneration in PD goes beyond the SNc. Major advances have occurred in recent years on the molecular and pathophysiological basis of PD, however there remain many questions a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 133 Pt 7 شماره
صفحات -
تاریخ انتشار 2010